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Abstract

Primacy and recency effects — wherein early and recent observations exert dispropor-
tionate influence on judgments — have long been noted in cognitive tasks involving
the sequential presentation of information. In studies where human subjects make
decisions based on the average of a sequence of numbers, recency effects are typically
modeled phenomenologically through exponential discounting, while primacy effects are
neglected altogether. Here, we exhibit the prevalence of both effects in such tasks, and
propose that they result from the observer’s imprecision in their running tally of how
many pieces of information they have received. If their approximate counting follows a
central tendency — a typical Bayesian pattern — then past information is overweighted
near the beginning of the sequence, while new numbers are overweighted towards the
end of the sequence. Thus both primacy and recency effects are simultaneously pre-
dicted by this single mechanism. The model moreover nests exponential discounting as
a special case in which the observer has no information about the count. The behavioral
data suggests that subjects indeed misestimate the count of observations, with biases
similar to those observed in numerosity-estimation tasks. Finally, we present evidence
that the central tendency of subjects shifts towards lower counts in tasks with shorter
sequence lengths, consistent with a Bayesian estimation of the counts. These findings
provide new insights into the cognitive processes underlying serial-position effects in
averaging tasks, with broader implications for other cognitive domains.
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Information often comes one piece at a time. Individuals process and integrate this infor-
mation, one piece after the other, to form judgments or make choices. In doing so, they fre-
quently exhibit serial-position effects, and in particular primacy and recency effects, whereby
early and recent information disproportionately influence their decisions. These effects have
been observed for decades and across various modalities: e.g., in forming impressions of per-
sonality on the basis of a list of traits1,2, in memory recall3–6, causal judgments7, inference
and prediction8–11, and perceptual decisions12,13. A kind of tasks in which each piece of
information should clearly have the same influence on decisions is averaging tasks, in which
subject are asked to make a judgment on the basis of the average of the magnitudes of
stimuli presented to them sequentially. The magnitudes may be physical properties of the
stimuli (e.g., length or orientation14,15), or numerosities, as in clouds of dots16, or presented
as Arabic numerals17–20. Most of these number-averaging studies find recency effects and
some find primacy effects. But the more recent studies, in any case, do not focus on serial-
position effects, which are often treated as peripheral: primacy effects are not considered,
and recency effects are typically captured in models through an exponential discounting of
remote observations. This assumption has become so commonplace that it is rarely justified
in detail, and the broader implications of serial-position effects are often ignored.

We aim to fill this gap by examining primacy and recency effects in number averag-
ing tasks more closely. We exhibit the significance of these effects in a recently published
dataset20,21, and we propose a single, plausible mechanism that accounts simultaneously for
both effects. Simply put, we assume that when an observer receives the nth number of a
sequence, they are uncertain about how many numbers they have seen thus far (i.e., they
are imprecise about n). Consequently, they are uncertain about how much weight this new
number should carry in their updating of their running estimate of the average. If they
estimate the count n with a central tendency (as is typical for Bayesian observers), then
at first they will underestimate the weight of the new number (and thus overestimate the
weight of the numbers already seen, resulting in primacy effects), but later in the sequence
they will overestimate the weight of the new number (resulting in recency effects). Pri-
macy effects and recency effects, by this account, thus indirectly reflect the central tendency
of Bayesian observers. In the extreme case where the observer has no sense of the count
of observations, our model reduces to the exponential-discount models commonly used in
the literature. However, in more realistic scenarios where observers have a reasonable but
imperfect estimate of the count, both primacy and recency effects naturally emerge.

The remainder of the paper is structured as follows. First, we analyze existing data
from a sequential number averaging task to document the presence of both primacy and
recency effects. Then we introduce our approach and demonstrate how it accounts for these
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effects. We then re-analyze the behavioral data under this new conceptual light and exhibit
how subjects seem indeed to mis-estimate the count of observations, which in turn results
in primacy and recency effects. We then predict that with shorter sequences, the crossover
point of subjects’ central tendency should come earlier, and we find evidence for that in two
other datasets. Finally, we conjecture in the Discussion how this approach could be applied
to problems of memory recall. Together, our results suggest that serial-position effects find
their origin in a suboptimal integration of new information that results from an imprecise
estimation of the amount of prior evidence received.

Results

Primacy and recency effects in a sequential averaging task

We analyze the responses of human subjects in one of the averaging tasks documented in
Ref. 20 (we are indebted to the authors of this study, who made their data available online21).
In each trial of this task, the subject is presented with a sequence of T = 8 numbers randomly
(and independently) sampled from a given distribution, and displayed for 350ms each. The
subject is then asked to indicate whether the empirical average of these numbers is higher,
or lower, than a reference value, µ, which is the mean of the distribution from which the
numbers are sampled. The authors manipulate this distribution and study how this impacts
the behavior of subjects; but here, we are interested in examining serial-position effects,
i.e., whether the position of each number in each sequence modulates its influence on the
decision of the subject, and thus we do not discuss the different experimental conditions.
(In addition, the task we focus on is the ‘single-stream’ task run by the author; we briefly
discuss further below the other, ‘dual-stream’ task that they implement.) More details on
the task can be found in Ref. 20.

In order to estimate the influence of each number on subjects’ decisions, we fit a decision
model in which an estimate of the average is compared, with noise, to the reference value, µ.
Specifically, the model subject computes a weighted average of the presented numbers,

m̂ =
T∑
t=1

wtxt, (1)

where xt is the number presented in position t, and wt is the weight applied to this number
in the estimate of the average, m̂. These weights sum to 1. The subject then compares this
estimate to the reference value, µ, but with Gaussian noise whose standard deviation is ν.
More precisely, the probability that the subject decides that the empirical average is greater
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Fig. 1: Subjects’ primacy and recency effects in an averaging task with sequen-
tially presented numbers. Correct weight (grey line) and median of subjects’ weights
(orange line) as a function of the position t. Stars indicate the p-values of permutation tests
(30,000 permutations) of the equality between subjects’ weights and the correct weights
(stars located above the correct-weights line), and between subjects’ weights at t = 4 vs. at
t = 1 and t = 8 (*: p < .05, **: p < .01, ***: p < 0.001). Error bars indicate bootstrap-
estimated 95% confidence interval.

than the reference value is Φ( m̂−µ
ν

), where Φ is the cumulative distribution function (CDF)
of the standard normal distribution. We fit this model to the responses of each subject, by
maximizing its likelihood.

A correct calculation of the average would apply to each number the same weight, wt =

1/T = 0.125. We find instead that the weight of a number xt in a subject’s estimate of the
average strongly depends on its serial position, t. The weight applied to the first number
(t = 1) is not significantly different from its correct value, but weights after that decrease
with the position t, up to t = 4 where the median weight, 0.101, is significantly lower than
the correct weight and lower than the weight applied by the subjects to the first number
(Fig. 1). In other words, subjects exhibit a primacy effect. Later numbers, conversely, see
their weights increase as a function of their position in the sequence, and the largest weight
is applied to the very last number (median weight equal to 0.159, significantly greater than
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the correct weight, and greater than the weight applied by subjects to the number in fourth
position; Fig. 1). In other words, subjects clearly exhibit both a primacy effect and a recency
effect. Many studies model the recency effect through an exponential discount of more remote
observations, and do not model the primacy effect (perhaps because it is smaller). We now
present a model that accounts simultaneously for both.

Sequential averaging with imprecise counts

We consider an observer who, like the subjects in the study presented above, is asked to
indicate whether the empirical average of T numbers presented sequentially is higher, or
lower, than the mean µ of the distribution from which these numbers are sampled. Because
the observations of the numbers unfold in time, we assume that the observer computes the
average in an ‘online’ fashion, i.e., by maintaining throughout the sequence an estimate
of the average and updating it every time a new number is presented. We denote by m̂t

the estimate of the average after presentation of the number xt. We posit in addition that
before seeing any number, the observer starts with an estimate equal to the mean of the
distribution, i.e., m̂0 = µ (this assumption will have however little consequence, as in most
cases presented below this initial estimate will receive no weight in the final estimate of the
average). We assume that the updated estimate is obtained as a weighted average of the
preceding estimate and of the new number, as

m̂t = γ̂tm̂t−1 + (1− γ̂t)xt, (2)

where 0 ≤ γ̂t ≤ 1. Such update rule indeed yields the correct average of the presented
numbers if the weight applied to the preceding estimate is the correct one, γt = t−1

t
. To

compute the correct weight, one must thus remember the number of observations seen thus
far, t.

Here we assume that the observer is uncertain about this count. As a result, they
choose a weight γ̂t ∈ [0, 1] that may differ from the correct weight γt. The observer may
for instance receive a noisy signal, rt, about the observation number t, and choose for the
weight γ̂t the expected value of the correct weight given the signal rt, i.e., the Bayesian
posterior mean, γ̂t = E[γt|rt]. The behavior of such estimate depends on the specifics of the
noisy signal and of the observer’s prior, but Bayesian estimates typically overestimate small
magnitudes and underestimate large magnitudes (‘central tendency effect’). As the correct
weight, γt = t−1

t
, increases with the observation number t, the weight γ̂t applied by the

observer to the preceding average will typically exceed the correct weight at the beginning
of the sequence, and fall below the correct weight at the end of the sequence. In other
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words, when near the start, past observations are overweighted; but near the end they are
underweighted.

To investigate whether this results in primacy and recency effects, we need to examine
the resulting weights of each number in the final estimate of the average: these result from
the compounded effects of the weights γ̂t applied to the successive estimates of the average.
More precisely, the estimate of the average after the last observation is the weighted average

m̂T = w0µ+
T∑
t=1

wtxt, (3)

where the weight wt of the number that appeared at time t ≥ 1 is

wt = (1− γ̂t)
T∏

i=t+1

γ̂i (4)

(with the convention that an empty product is equal to 1), and the weight w0 applied to the
mean µ is

w0 =
T∏
i=1

γ̂t. (5)

(Note that
∑T

t=0wt = 1.) We call ‘successive weights’ the weights γ̂t applied to the successive
estimates of the average, and ‘number weights’ the resulting weights wt on the numbers. With
the correct successive weights (γ̂t = γt), the correct number weights are obtained: w0 = 0,
i.e., no weight on the mean µ, and wt =

1
T
,∀t ≥ 1, i.e., equal weights applied to each number

in the estimate of the empirical average (Fig. 2, grey lines).
As a first illustration, we note that the last observation receives the weight wT = 1− γ̂T .

At the last observation, the weight applied to the previous average should be γT = T−1
T

, i.e.,
its highest possible value for a sequence of T numbers. But the observer, unsure about the
correct value of this weight, relies on an estimate, which presumably is not greater than the
maximal value. In most cases it will be lower, i.e., the observer chooses a weight γ̂T that
underestimates the correct weight for the previous average, and thus a weight on the last
observation, 1− γ̂T , that overestimates the correct one. Therefore, the observer overweighs
the last number in their estimation of the average, i.e., they exhibit a recency effect.

Beyond this simple illustration, the patterns of under- and overweighting of the numbers
in the estimate of the average depends in non-trivial ways on how the weights applied to the
successive averages, γ̂t, under- or over-estimate the correct weights, γt. We thus consider a
few illustrative choices of the successive weights γ̂t, and examine the behavior of the resulting
number weights, wt.
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No-information model We start with the case of an observer who does not have access
to any information that would allow them to estimate the current count of observations.
Thus at every presentation of a new number, the observer is in the same state of knowledge
(or lack thereof), and therefore they always choose the same weight. Thus γ̂t is a constant,
which we denote by γ̂ (Fig. 2A). The number weights are then

wt = (1− γ̂)γ̂T−t for t ≥ 1, and w0 = γ̂T . (6)

Thus the number weights wt, for t ≥ 1, amount to an exponential filter, by which more remote
observations are more strongly discounted. Such exponential-discount model is commonplace
in the literature on sequential averaging16,19,20. Here we have shown that an observer who
seeks to update their estimate of an average, but who does not know how to weigh the
incoming evidence relatively to preceding estimate, will exhibit exponential discounting. As
each number is weighted less than the next (wt−1 = γ̂wt), this observer exhibits a recency
effect (Fig. 2B).

No information on the count, except for the first The observer just presented might
seem an extreme case. In particular, even when presented with the very first number of the
sequence, this observer is unable to recall how many numbers they have seen. We now turn
to a different observer, one who knows upon seeing the first number that it is indeed the
first. In other words, they correctly choose the initial successive weight as γ̂1 = γ1 = 0 (and
henceforth we will consistently make this assumption; note that it implies w0 = 0). Starting
from the second number, we assume once again that the observer does not remember how
many numbers they have seen (except that they know it must be more than one, as otherwise
they would know that it is one), and thus the successive weights they choose are here also a
constant, γ̂ (Fig. 2C). This results in the number weights

w1 = γ̂T−1, wt = (1− γ̂)γ̂T−t for t ≥ 2, and w0 = 0. (7)

Here also the number weights yield an exponential discount, and thus a recency effect, but
only for the numbers between t = 2 and T . As for the weight on the first number, w1,
we note that w1 = γ̂

1−γ̂
w2, and thus whether the first number will be weighted more in the

final average than the second number depends on whether γ̂ > 1/2. What weight γ̂ should
our observer choose? The successive weights γt form an increasing function of t, and the
observer knows that the count is not 1, and thus that it must be 2 or more: it would be
reasonable, then, to choose a weight γ̂ equal to or greater than γ2, the correct weight for the
second number; and strictly greater than γ2, if T > 2. But γ2 is precisely equal to 1/2 (as
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Fig. 2: Imprecise estimates of the correct weight on past information yield re-
cency and primacy effects. Successive weights γ̂t on the preceding average (left column)
and the resulting number weights wt (right column) as a function of number position, t,
with constant successive weights (A, B, red lines), correct first successive weight (γ̂1 = γ1)
followed by constant successive weights (C, D, blue lines), biased successive weights (E, F,
green lines), and correct weights (grey lines). The number weights wt in the right column
are obtained from the successive weights γ̂t in the left column through Eq. 4.

it is the weight applied when taking the average of two numbers). Therefore, w1 > w2, i.e.,
this observer exhibits a primacy effect, in addition to the recency effect already mentioned
(Fig. 2D). In short, we obtain both effects with an observer who knows that the initial
number is indeed the first, but who is unable to recall the correct count after that.
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Biased estimates of the correct weights The second observer just presented may
seem more plausible than the first, but it may still seem improbable that as early as the
second observation human subjects would entirely lose track of the count of observations. A
possibility is that they receive a noisy signal rt about the count t that allows them to derive
a reasonably good, but not perfectly accurate, estimate of the correct count (except at the
first observation, for which we assume that they accurately identify that it is indeed the first,
i.e., γ̂1 = γ1 = 0, and thus w0 = 0). We assume that there is a value τ ∈ [2, T ] such that for
counts t greater than 2 but lower than τ , the observer on average overestimates the count t,
while for counts above τ , on average the observer underestimates the count t. (The averages
are taken over realizations of the random signal rt.) This ‘central tendency’ is a typical bias
of Bayesian observers. Consequently, the successive weights γ̂t chosen by the observer are
overestimations of the correct weights γt up to τ , and underestimations of the correct weight
for t > τ . We call τ the ‘crossover point’. For the sake of simplicity, we assume that this
bias is linear, as

γ̂t = γt − α(t− τ), for t ≥ 2. (8)

For the crossover point, we choose the middle value between 2 and T ; thus with T = 8

we choose τ = 5. At the crossover point, the chosen weight is correct, i.e., γ̂τ = γτ . The
successive weights chosen by this observer is shown in Figure 2E (for α = .015). As for
the resulting number weights, they decrease from t = 1 to t = 3, after which they increase
(Fig. 2F). In other words, this observer exhibits a primacy effect, followed by a recency
effect; and the behavior of their number weights resemble that of the subjects (Fig. 1). We
thus obtain a behavior similar to that of the subjects by positing an observer who correctly
identifies that the initial observation is the first one, and whose estimation of the subsequent
counts are imprecise, but consistent with Bayesian inference in that they overestimate smaller
magnitudes and underestimate larger magnitudes.

Subjects as imprecise counters

The analysis presented above suggests that the primacy effect and the recency effect found
in subjects’ behavior do not result from two separate mechanisms, but stem instead from
a single origin, the imprecision in subjects’ evaluation of the amount of evidence presented.
This imprecision induces in turn the incorrect weight they apply to the new information,
relatively to their previous estimate of the average. This mechanism prompts us to examine
directly the successive weights γ̂t chosen by the subjects, instead of the number weights wt.
(We note that while the weights wt must obey the normalization constraint

∑T
t=1 wt = 1, the

successive weights γ̂t have no such constraint, and thus they cannot be identified without an
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additional assumption; in what follows we assume that γ̂1 = 0, i.e., that upon seeing the first
number the subjects know that the count is t = 1.) We find that the subjects’ successive
weights are larger than the correct weights when the number t of observations is lower than
5, and smaller than the correct weights when t is greater than 5, with significant differences
for t = 4, 6, 7, and 8 (Fig. 3, left column). This pattern of over- and under-estimation is
thus similar to that of the model observer presented above, with a similar crossover point τ
around 5.

We can also directly estimate the subjects’ approximate counts, t̂t, that yield their succes-
sive weights γ̂t through the relation γ̂t =

t̂t−1
t̂t

which relates the amount of past evidence seen
to the weight that should be given to this past evidence. As expected given the monotonicity
of this relation, the subjects’ approximate counts overestimate the true counts for t < 5, and
underestimate them for t > 5 (Fig. 3, bottom right). As mentioned, this central tendency is
a typical Bayesian pattern. But notably, we find that the shape of the approximate counts,
as a function of the correct counts, resembles that obtained in numerosity studies, in which
subjects are asked to estimate a number of items; in particular, the underestimation bias
for the large counts is greater than the overestimation bias for the smaller counts22–24. In
short, it seems that the subjects in the averaging task make errors in their estimates of the
numbers of observations in the same way that subjects in numerosity-estimation tasks make
errors in their estimates of the numbers of items presented to them. As for the linear-bias
model, it captures well these patterns (Fig. 3, green lines), although it seems to overestimate
the bias of subjects for low counts (see Fig. 3, bottom left, for t = 2 and 3). This also points
to the fact that subjects make smaller errors for low counts, presumably because after 2 or
3 observations, they still have a reasonably good idea of how many observations they have
seen.

The four panels of Figure 3 show the same data under different lights: the successive
weights γ̂t (top left), the bias γ̂t − γt (bottom left), the number weights wt (top right), and
the approximate counts t̂t (bottom right) are all quantities directly related to each other
(although the relation between γ̂t and wt is a complex one; see Eq. 4). A common view is
to consider the weights wt (top right) and to point at two behavioral patterns: the primacy
effect and the recency effect. We argue for a different view, represented in the other three
panels. Under this view, the recall by subjects of the count of observations is imprecise, and
on average, biased (in a way consistent with Bayesian inference); this leads them to weigh
incorrectly, in their update of the average, their previous estimate and the new number.
In turn, this results in numbers weights that exhibit both primacy and recency effects.
These two effects are thus simultaneously accounted for by a single, plausible mechanism of
imprecise recall.
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Fig. 3: Subjects’ primacy and recency effects originate in their imprecise counts
of seen observations. Correct (grey lines), biased model’s (green lines), and subjects’
median (orange lines) successive weights γ̂t (top left), biases γ̂t − γt (bottom left), number
weights wt (top right), and approximate counts t̂t (bottom right), as a function of number
position, t. Stars indicate the p-values of permutation tests (30,000 permutations) of the
equality between subjects’ successive weights and the correct weights (**: p < .01, ***: p <
0.001). Error bars indicate bootstrap-estimated 95% confidence interval. The data in the
top-right panel is the same as in Fig. 1.

One implication of this mechanism is that the crossover point τ should depend on the
total number T of observations in a sequence. In our model we have chosen, for the crossover
point, the midpoint between 2 and T = 8, i.e., τ = T+2

2
= 5, as a straightforward specification

of a central tendency for count estimates. The effective crossover point in subjects’ responses
seem indeed to be close to this value (Fig. 3). To test whether sequences of different lengths
result in different crossover points, we turn to other datasets, that pertain to similar averaging
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Fig. 4: Subjects’ central tendency shifts towards lower counts when sequences are
shorter. Subjects’ median crossover point τ as a function of sequence length T in different
studies20,25. Stars indicate the p-values of permutation tests (30,000 permutations) of the
equality between subjects’ crossover point for T = 8 vs. T = 4 and T = 5 (***: p < 0.001).
Error bars indicate bootstrap-estimated 95% confidence interval.

tasks. The first dataset we consider comes from the same study as the one we have focused
on so far20, but in this case the sequences are half as long, i.e., T = 4. We have collected the
second dataset in the context of a different study25,26, in which the sequences of number had
length T = 5. For both studies we thus predict that the crossover point τ should be lower
than the one posited so far, 5. We note, however, that the tasks in these two studies are
different than the one we have considered so far: in both cases, subject were presented with
two sequences of numbers (each of length T ), and they were asked to compare the averages
of the two (instead of observing one sequence and comparing its average to a fixed, reference
value). Thus any effect we find may originate in this difference in task design. In fact, a
possibility is that keeping track of two sequences comes with an increased cognitive load that
may accentuate the imprecision in the recall of the counts, and this may lower the crossover
point of the count estimates vs. the correct counts, thus introducing a potential confound
for our predictions.

Notwithstanding this caveat, we compare the crossover point τ in these three datasets
that differ by the sequence length T . Our prediction is that τ should be near the midpoint
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between 2 and T , and thus roughly obey the equality τ = T+2
2

. To estimate τ in each case,
we fit the linear-bias model specified by Eq. 8 to the data, but this time we let τ be a free
parameter. For the main dataset considered in this study (T = 8), the best-fitting crossover
point is τ = 5.57, slightly higher than the value we have posited in our model. For the other
two datasets, our predictions are τ = 3.5 for the dataset with T = 5, and τ = 3 for the
dataset with T = 4. We find τ = 3.54 and τ = 3.16, respectively (Fig. 4). These values
are reasonably close to our predictions. They do not significantly differ from each other, but
they are both significantly lower than that obtained with T = 8. Across these three values
of T , the crossover point τ thus seems to be an increasing function of T , as predicted.

Discussion

We have introduced a model of imprecise recall of the count of seen observations that yields
both primacy and recency effects in a sequential number-averaging task. Consistent with
central tendency, a hallmark of Bayesian inference, subjects appear to overestimate the
count of observations near the beginning of the sequence, leading to an overweighting of
preceding numbers (primacy effect), and to underestimate the count toward the end of
the sequence, giving too much influence to recent numbers (recency effect). This simple
misevaluation of the count of observations provides a unified explanation for these seemingly
distinct phenomena (Fig. 3). Our approach, moreover, nests exponential-discount models as
a special case in which subjects have no sense of how many items they have seen.

Typical accounts of serial-position effects rely on a ‘leak’ term that yields an exponen-
tial discount which captures the ‘forgetfulness’ of the decision-making process12,16,19,20, and
which can be seen as an optimal adaptation, either to the cognitive constraints hindering
information integration11,27, or to the putative uncertainty in the environment28,29. This
leak term usually results in recency effects, but it may yield primacy effects if allowed to
be negative, which has been interpreted as a confirmation bias13. In memory recall experi-
ments, in which subjects are asked to recall words that were presented to them sequentially,
serial-position effects have been interpreted as reflecting the underpinnings of two storage
mechanisms, one short-term and one long-term4,6. At first sight our account of serial-position
effects, by which subjects do not know precisely how much weight they should apply to a new
number in computing an updated average, may seem to be only relevant for the specific task
of averaging numbers, with little if any implications for other domains. We note however
that in a sequential inference task, we have observed that the way people update their beliefs
was precisely largely insensitive to the amount of evidence previously seen, suggesting that
there also subjects did not correctly weigh past and new information30.
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Thus we argue that the mechanism we introduce applies more generally than solely to
averaging tasks. To further illustrate this point in the context of memory-recall tasks, we
sketch a model that is in spirit very similar to the model we have presented. Suppose that
an observer is presented with T words, sequentially, and has at their disposal N bits to store
these words. The more bits dedicated to store a word, the more likely is the observer to
recall accurately this word. We denote by ni,t the number of bits dedicated at time t to
the word that was presented in position i ≤ t. We also posit that the observer always uses
all the bits available, i.e.,

∑t
i=1 ni,t = N , for all t ≤ T . Thus upon receiving the word in

position t > 1, all bits are ‘taken’, but our observer decides to dedicate a fraction 1 − γ̂t

to the new word, i.e., nt,t = (1 − γ̂t)N , and to trim the memory of all the previous words
by the same factor, i.e., ni,t = γ̂tni,t−1 (thus still using all the bits). After receiving the
last word, the fraction of bits dedicated to each word depends on the sequence of chosen
fractions, γ̂t, and is equal to the weight wt given in Eq. 4, i.e., ni,T = wiN . If the observer
chooses γ̂t as equal to γt =

t−1
t

, then the N bits are at all time equally divided among the
t words seen; but this requires remembering the count t. If the observer has only access to
an approximate estimate of this count, then the fraction wt dedicated to each word, as a
function of t, will exhibit the non-monotonic, U-shape behavior shown in Fig. 2F — and so
will the probability of recalling each word. Thus this observer exhibits primacy and recency
effects in a memory-recall task.

We leave the study of this memory model for future work. We surmise, moreover, that
a similar approach could be applied to other domains. Finally, we note that our model
predicts that two factors should influence the primacy and recency effects in sequential tasks.
First, the distribution of the total number of stimuli T in a sequence (in the datasets we
have considered, T was fixed, and we have provided some evidence that subjects are indeed
sensitive to it; see Fig. 4). Second, the precision with which subjects estimate the count
t, which could be manipulated by changing the duration of presentation, or by increasing
the cognitive load of the subject (e.g., by asking the subject to complete another task in
parallel). We leave these further investigations of the model to future studies.
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